Forecasting Bank Indonesia Currency Inflow and Outflow Using ARIMA, Time Series Regression (TSR), ARIMAX, and NN Approaches in Lampung
نویسندگان
چکیده
منابع مشابه
Time series forecasting of Bitcoin price based on ARIMA and machine learning approaches
Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine...
متن کاملForecasting Economics and Financial Time Series: ARIMA vs. LSTM
Forecasting time series data is an important subject in economics, business, and finance. Traditionally, there are several techniques to effectively forecast the next lag of time series data such as univariate Autoregressive (AR), univariate Moving Average (MA), Simple Exponential Smoothing (SES), and more notably Autoregressive Integrated Moving Average (ARIMA) with its many variations. In par...
متن کاملGBP/USD Currency Exchange Rate Time Series Forecasting Using Regularized Least-Squares Regression Method
GBP/USD currency exchange rates. A grid search is used to choose the optimal parameters.
متن کاملTime series forecasting using a hybrid ARIMA and neural network model
Autoregressive integrated moving average (ARIMA) is one of the popular linear models in time series forecasting during the past three decades. Recent research activities in forecasting with arti/cial neural networks (ANNs) suggest that ANNs can be a promising alternative to the traditional linear methods. ARIMA models and ANNs are often compared with mixed conclusions in terms of the superiorit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Jurnal Matematika, Statistika dan Komputasi
سال: 2020
ISSN: 2614-8811
DOI: 10.20956/jmsk.v17i2.11803